
VK Newsletter

Software
Development is
subjective

🔥Blog |📰 Newsletter |🚀 Founders Guide |󰭉 CTO Guide

Vadim Kravcenko - 12th April 2022

https://vadimkravcenko.com/?utm_source=pdf
https://vadimkravcenko.com/newsletter/?utm_source=pdf
https://vadimkravcenko.com/founders-guide/?utm_source=pdf
https://vadimkravcenko.com/technical-manager-guide/?utm_source=pdf

Opinionated Practices 3

Opinionated Frameworks 4

Opinionated Products 6

Opinionated Processes 8

Opinionated Conclusion 9

1

Most of you are familiar with the feeling of joining a new company and have that

urge to rewrite everything. Seeing the blasphemy that your new team members

committed a few years ago makes your eyes hurt. Of course, you know better, and

you would follow the best practices when developing that feature. Right?

Probably. But over the years, I learned that the problem with “best practices” is

that they’re very subjective. Each company you work at has different rules to be

followed that, over time, make sense, and as you leave the company, you take

some of those rules with you as your own “best practices.”

But there’s no one size fits all in software development. Everything that we do is

very opinionated and works only for us. It’s a monster built from different

aspects of different paradigms that helps us, and only us, to be efficient.

Everyone knows better.

2

Opinionated Practices

If we take a look at development practices, there are so many different ways that

you can go about building software:

1. Test-Driven Development - the Holy Grail of development everyone tries to

achieve.

2. Acceptance Test-Driven Development - a variation of the TDD but more

focused on explaining what needs to be done from the business

perspective.

3. Behavior-Driven Development - another variation that focuses on creating

a shared understanding of a description of how part of the software should

work.

4. Example-Drive Development and Story TDD - even more variations of how

you can define what software needs to do and how to test it.

As you can see, each one is a highly opinionated practice, and each has

developers who preach it’s the only proper way to build software. If you’re not

doing TDD, are you even doing software development?

3

Opinionated Frameworks

The javascript world is full of wonders. There are frameworks that all claim a

different approach to DOM rendering and encapsulation of modules. You can

build your web application (or even mobile application) in a thousand different

ways, and each of those frameworks you use has its own best practices that do

not match.

Server-side rendering got exiled not long ago, but now it’s back on the table as

the new cool thing with partial server-side rendering to “speed up” your

application. The best practice now is to render content that changes less often

server-side and the parts that often change on the browser. Some will agree, the

others will say this is crazy.

4

Opinionated Frameworks tell you how to do things, and if you agree with them,

you'll be much more efficient.

TailwindCSS is an example of a very opinionated CSS framework where the styles

are done via the classes. Many people haaaaate the idea and argue, "HTML gets

bloated, tailwind is like inline styles, it violates the separation of style and

markup." The conventional wisdom is the opposite of Tailwind — hide as much

CSS in the stylesheets and use a single class for an element. But I like the concept

and think it makes me efficient when I do HTML changes for my blog, for

example.

So who's right? Nobody. It's just our opinions, they're valid even if we have

opposite ones.

5

Opinionated Products

You know how Microsoft Excel tries to guess what you’re trying to do, and

sometimes it assumes wrong, so you have to go to the configuration and change

the font, table, etc. That’s convention over configuration — meaning the product

works delightfully for 90% of cases but allows the other 10% to be changed when

necessary.

There are a lot of opinionated products — even if we take just the calendar

applications. There are so many different ways you can display calendars and

weekly schedules that hundreds of applications are built with strong opinions.

For example, some allow booking slots only in 1-hour blocks, and others allow

only a weekly view.

An excellent example in the Java world is the Ant vs. Maven. These are build tools

used to create java executables. Ant gives you the flexibility, and you need to

specify everything, while Maven hides most of the stuff but allows you to override

the defaults.

Maven became more popular than Ant in the Java ecosystem because it was easy

to use 90% of the time, and the other 10% you can change with configuration.

6

Conventions create an opinionated product. Opinions create user delight. User

delight creates successful businesses.

7

Opinionated Processes

You might think that if you’re not doing agile to the letter, you’re a failure. Are you

even doing software development if you can’t do it properly as the agile gods

have decreed?

Well, that’s also wrong. There are so many opinions on doing agile that the

original manifesto no longer makes sense. For example, during the last few

months, I’ve heard several contradicting statements on doing estimations and

planning for agile teams.

1. You should estimate in points.

2. You should estimate in hours.

3. You should not estimate at all and break down the story into the smallest

possible tasks.

4. Don’t do agile at all. Waterfall is the best.

Even though you might think that “doing agile” is the best practice, there are so

many opinions on how to do it that it doesn’t make sense to follow any advice

blindly.

8

There’s a simple guide for adopting anything: you take any methodology that you

think fits your goals and squeeze it, stretch it, squash it so that it works for your

organization — so you can be as effective as possible. If anything inside the

methodology makes you inefficient, throw it out and define your rules.

9

Opinionated Conclusion

There is no silver bullet solution out there that will make you automatically

efficient. Quite the opposite, if you take any methodology and try to implement it

exactly as it’s described, your efficiency will likely drop.

Being agile does not mean having a rule for everything and just following the red

dotted line. Getting shit done is the only factor that matters. And even if you have

a unique adaptation of the SCRUM methodology in your company — that’s also

fine, as long as it works for you.

Opinions matter. The context surrounding you makes your situation unique, and

the tools you select must also be adapted to your circumstances.

Every framework, programming language, and IDE you choose is just a tool that

should help you get from point A to point B in an efficient way without

compromising on your values. As long as you have that, then congratulations, you

have a working system.

10

